Notification report

General information

Notification Number

Member State to which the notification was sent

Date of acknowledgement from the Member State Competent Authority

Title of the Project
Fungal resistant wheat Germany 2003

Proposed period of release:
01/03/2003 to 31/10/2003

Name of the Institute(s) or Company(ies)
Syngenta Seeds GmbH, Alte Reeser Straße 95
D-47533 Kleve;

3. Is the same GMPt release planned elsewhere in the Community?
France; United Kingdom;

Has the same GMPt been notified elsewhere by the same notifier?

If yes, notification number(s):

Genetically modified plant

Complete name of the recipient or parental plant(s)
Common NameFamily NameGenusSpeciesSubspeciesCultivar/breeding line
spring wheatpoaceaetriticumtriticum aestivumUC 703

2. Description of the traits and characteristics which have been introduced or modified, including marker genes and previous modifications:
1. FRG. Gene of fungal origin conferring tolerance to Fusarium pathogens.
2. PMI. Phosphomannose Isomerase gene isolated from E.coli, conferring tolerance to mannose.

Genetic modification

3. Type of genetic modification:

In case of insertion of genetic material, give the source and intended function of each constituent fragment of the region to be inserted:
The plasmids used for the transformation were derived from the pUC19 plasmid described by Yanisch-Perron et al (1985).

TABLE 1 : Specification of the plasmids:

Sequences pZMLR 14 pZMLR 69
6610bp 6636bp

Promoter Ubi Ubi
Gene PMI Fungal resistance gene (FRG)
Terminator 35S nos
Intron Intron #9pepc (I-9) -
Ampicillin resistance gene Amp Amp
controlled by a prokaryotic ( bla gene) ( bla gene)
promoter sequence.

Prior to the transformation, these plasmids were cut using restriction enzymes in order to eliminate the fragment carrying the bacterial marker that confers resistance to ampicillin and to achieve transfer to the plant of only the plasmid fragment that carries the necessary genetic material for effective transformation.

TABLE 2: Specification of Restriction Enzymes Used

Plasmid Fragment used for the transformation Restriction enzymes
pZMLR14 Ubi-PMI-35S (4253 bp) AscI (4019 et 5876 bp)
pZMLR69 Ubi-FRG-nos (4117 bp) PvuII (1945 et 4464 bp)

Wheat plants with the same modification were evaluated in field trials in the USA and Canada in 2000 and 2001 (permit references USDA Notification nos. 00-074-33n, 01-033-04n, CFIA File nos. 00-NOV2-WHT01 and 01-SYN1-163-WHT01), in Argentina in 2001 (permit reference nº422/00 - Resolución SAGPYA 324 (04/07/2001)) and in the USA (02-074-06n), in Canada (02-SYN1-163-WHT) and in the UK (02/R34/03) in 2002.

Table 3 below describes the nature and source of the DNA sequences within pZMLR 14 and pZMLR 69.

TABLE 3 : Vector components of plasmids pZMLR14 and pZMLR69

Coding sequence Size Function and origin of the sequence
Ubi 2000 bp Promoter of a maize ubiquitin gene together with the 1st exon and
the 1st intron of the gene (Christensen et al, 1992).
FRG 1380 bp cDNA isolated from a fungal species, coding for an enzyme capable of
conferring a Fusarium tolerance characteristic.
PMI 1103 bp Phosphomannose Isomerase Gene isolated from Escherichia coli (Miles and
Guest,1984). This gene is used as a marker for the transformation, and allows
positive selection on mannose (Bojsen et al 1994, Joersbo et al 1998, Reed 1999,
Negrotto et al 2000).
Intron #9pepc (I-9) 107 bp Intron isolated from the maize phosphoenolpyruvate carboxylase gene (pep-c) (Hudspeth and Grula, 1989);
its role is to stimulate the expression of the PMI gene.
35S term 77 bp Termination sequence of the cauliflower mosaic virus gene.
Nos term 250 bp Termination sequence of the nopaline synthase gene, isolated from Agrobacterium tumefaciens (Depicker et
al 1982, Bevan et al 1983)

6. Brief description of the method used for the genetic modification:
Biolistics method

7. If the recipient or parental plant is a forest tree species, describe ways and extent of dissemination and specific factors affecting dissemination:
Not applicable.

Experimental Release

1. Purpose of the release:
To compare the agronomic performance (pathogen infestation level and mycotoxin level) of wheat modified to express an enhanced resistance to Fusarium pathogens with existing non-modified varieties, grown under standard agronomic conditions in Germany.

2. Geographical location of the site:
Location: Friemar (See Appendix 2 for map)
Postcode: D-99869
District: Gotha
Federal state: Thuringia
Land register: 743 / 7705
Company: Südzucker AG Mannheim / Ochsenfurt
Hofgut Friemar
An der Windmühle
D-99869 Friemar

3. Size of the site (m2):
- Total trial ground (surface of the trial plus stripped area plus border of dicotyleton plants) is approx. 8000 m²
- Surface of the trial will be approximately 400 m² (release area plus border rows [non GM wheat, no less than 5 m])
- Surface of the trial will be surrounded by a 5m area stripped of all plants and a 30m border of dicotyleton plants
- Plot size: 1m x 1m (1m2), surrounded by a 0.3m bare border.
8 rows per plot (8 x 0.125m = 1m)
200 seeds per plot (25 seeds per row)

4. Relevant data regarding previous releases carried out with the same GM-plant, if any, specifically related to the potential environmental and human health impacts from the release:
No adverse effects were noted from wheat plants with the same genetic modification released in the field in the USA and Canada in 2000 and 2001, in Argentina in 2001 and in the USA, Canada and UK in 2002.

Environmental Impact and Risk Management

Summary of the potential environmental impact from the release of the GMPts:
This application concerns a small scale research trial which will take place in Friemar, Germany. Due to the characteristics of the wheat plants, effects are expected to be limited to the site of the trial, and to be transient in nature.

Wheat is an annual plant that reproduces by means of seed. Seeds that are shed on the soil before or during harvest may overwinter and sprout the following spring. However seed is unlikely to survive longer than 2 years due to lack of dormancy (Field Agronomist, personal communication) and volunteers are easily controlled under standard agricultural conditions.

Wheat flowers display characteristics that do not favour cross-pollination. Under natural circumstances the pollination of wheat relies mainly on self-pollination (average level of 97-99%). Compared to other allogamous grasses, the production of pollen by a wheat ear is very limited, 10% and 2.5% compared to that of rye and maize inflorescence respectively (de Vries, 1971).

Wheat pollen is dispersed by the wind (David & Pham, 1993) but it is fairly heavy, which restricts its dispersal distance (de Vries, 1971, Anand and Sharma, 1974).
Within the specific context of hybrid wheat production, viable pollen dispersal studies have been conducted, in the absence of any pollen competition, using male sterile wheat plants (Porter et al 1966, 1967, Wilson 1968, Stroskopf and Rai 1972, Anand and Beri 1971, de Vries 1974). The dispersal of pollen was assessed over distances of up to 30 metres, by measuring the percentage of grains formed on the male sterile plants. A considerable amount of variability was observed among the results obtained, probably due to the differences in experimental design (genotypes, size of the pollinator plots, environmental factors etc.) leading to very variable degrees of pollen loads on the female flowers’ stigmata. Wheat pollination has been observed on male sterile plants at distances of around 30 metres from the pollen emitting source.

Wheat pollen is highly sensitive to environmental conditions. Pollen viability for periods of time ranging from 1 min to approximately 30 min in optimal field conditions of 20 °C, 60% relative humidity have been quoted (Poehlman 1987).

Whilst wheat species may be present at the release site, they will be at least 50m away from the transgenic trial site. These crops are being grown for research and development purposes only. There is potential for wheat , rye and triticale crops to be planted in areas surrounding the field, but at a distance of at least 100 m from the trial.

There are a small number of Aegilops species that have the potential to hybridise with wheat in Germany under natural conditions. All species of Aegilops are annuals, often growing in dry, open habitats, not on managed agricultural land. The species described are most prevalent in Southern Europe, and are not indigenous in Germany.
A survey of the flora surrounding the field site was conducted in March 2002 confirming that sexually compatible wild species are not present in the experimental fields.

In summary, the self pollinating nature of wheat, the short pollen life, the absence of wild relative species with which hybridisation is possible at the site, the 5m border of non modified wheat and the distance the trial will be located from other wheat crops, indicates the likelihood of pollen flow resulting in successful cross-pollination of the same or sexually compatible species, or from the same or other sexually compatible species to the trial plot is minimal, under the conditions of the trial.

Any ungerminated seed remaining after sowing or produced as a result of the trial may emerge as volunteers. To help with volunteer control, any residual grain will be left on the surface of the trial plot and encouraged to germinate by rain or irrigation. The following year, a crop other than cereal that will allow the clear identification of volunteers will be grown and any wheat volunteers emerging will be removed and incinerated or destroyed by treatment with an appropriate herbicide. The site will be monitored for at least a year after harvest.

The genetic modifications described above are unlikely to confer any invasiveness characteristics to the plant since the intended phenotypic expression of the modification is an increase in Fusarium tolerance. If the plants are host to the Fusarium species targeted by the gene, the development of these species on these plants could be reduced. This selective advantage is only likely to be for the duration of the growing season since wheat does not possess the agronomic qualities to enable it to become a weed and cannot survive without human intervention.

In summary, the likelihood of the modified wheat plants becoming more persistent or invasive than non-modified plants is considered to be negligible.

Population levels of non-target organisms are likely to remain unaffected in this trial because of the specificity of the intended effect of the modification. No direct, indirect, immediate or delayed effects have been noted in previous USA, Canadian, Argentinian and British trials with the same genetically modified wheat.

Being expressed constitutively both proteins encoded by the fungal resistance gene and the PMI gene may be present in the soil as a result of processes such as root damage. However, the FRG is isolated from a common fungal species which is widely prevalent in nature and is likely to be present in plants that are colonised with the fungal species. Neither the PMI protein sequence nor the FRG protein sequence shows homology to known allergens or toxins when searched against allergen/toxin databases.

There is no evidence to suggest that gene transfer occurs from a plant species to micro-organisms.

The trial is a small scale research trial, and no plant material will be added to the human food chain or to the animal feed chain.

Biogeochemical processes are not expected to be affected in any way by the presence of the modified plants.

The cultivation and management techniques used for the modified wheat are the same as those used in good trials practice.

Brief description of any measures taken for the management of risks:
During the trial, the plot will be monitored on a regular basis for volunteer plants. Any found will be destroyed. After termination of the trial, the plot will be monitored for at least a year. Any volunteers detected during the monitoring period will be destroyed. If during the monitoring procedure, concerns arise as to the persistency of the plants the monitoring period will be extended. A crop other than cereal that will allow the clear identification of volunteers will be grown in the following season and any wheat volunteers emerging will be removed and incinerated or destroyed by treatment with an appropriate herbicide.

If necessary the wheat plants can be easily destroyed using a herbicide. In the event of small scale vandalism, individual plants uprooted or damaged will be removed and destroyed by incineration.
If practicable, without compromising the data that would have been obtained, the plants may be replaced and /or replanted.

In the event of large scale vandalism where it is deemed the trial cannot continue, the trial will be terminated by the application of a herbicide and the plant material will be disposed of as described above.

Summary of foreseen field trial studies focused to gain new data on environmental and human health impact from the release:
The planned trial is a research field trial which aims to compare the agronomic performance of wheat modified to express an enhanced resistance to Fusarium pathogens with existing non-modified varieties, grown under standard agronomic conditions in Germany. It is not specifically designed to gain new data on the environmental and human health impact of the release.

Final report

European Commission administrative information

Consent given by the Member State Competent Authority:
08/04/2003 00:00:00